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Abstract—Consistent coating quality in thermal spray 
processes is challenging due to inherent complexity, operator-
dependent controls, and evolving equipment conditions. While 
the use of advanced sensors for real-time process monitoring 
has grown, the effective integration of diverse data streams and 

the application of modern analytics remain limited. This paper 
presents the AccurasprayHub, a centralized data platform 
designed to harmonize booth parameters, in-situ plume 
measurements, maintenance schedules, and coating quality 
evaluations. By combining domain expertise with advanced 
analytics, including initial steps toward machine learning, the 

AccurasprayHub establishes robust datasets, identifies stable 
process windows, and provides proactive insights for process 
improvements. The approach is rooted in a realistic 
understanding of the complexities of thermal spray operations, 
emphasizing careful data construction, iterative refinement, and 
pragmatic adoption of informatics. Preliminary on-site trials 

with an aerospace industry partner have confirmed the 
platform’s value in improving process consistency and 
establishing a reliable foundation upon which more 
sophisticated AI-driven process control can be developed over 

time. 

Introduction 

The thermal spray industry spans a wide range of processes and 
applications, relying on controlled melting, acceleration, and 
deposition of powdered materials onto substrates to produce 

coatings with critical functional properties [1]. Although 
longstanding methodologies and experienced operators have 
guided the optimization of parameters, the increasing 
complexity of modern applications, along with the need for 
enhanced consistency and reduced reliance on human intuition, 
is pushing the field toward more data-driven strategies [2, 3]. 

The demand for robust, quantitative insights arises from the 
intricate interplay between feedstock powder characteristics, 
booth parameters, and the thermal, kinetic, and geometric 
properties of the spray plume that directly influence coating 

quality. 

Over the years, advanced sensors capable of providing real-time 
measurements of plume characteristics—such as particle 
temperature, velocity, and intensity distribution—have become 

more accessible. Tecnar’s Accuraspray 4.0 sensor, for instance, 
has been widely adopted and recognized for its reliable 
monitoring capabilities. Even so, translating raw sensor data 
into actionable process adjustments remains a complex task. 
The path from measured plume properties to final coating 

microstructure is influenced by numerous intermediate 
variables, equipment maintenance states, and potential sources 
of variability. Traditional approaches typically rely on setting 
simple min-max tolerance windows for sensor readings. While 
this method offers a baseline of control, it lacks the 
sophistication needed to adapt to evolving conditions, multiple 

feedstock powders, and variations in equipment condition. 

Recent interest in artificial intelligence, machine learning (ML), 
and broader informatics methods suggests that correlating 
coating properties with observed process conditions could be 

improved by systematic data integration and analysis. 
Nevertheless, applying these techniques to thermal spray is far 
from being straightforward. The diversity of process conditions, 
scarcity of well-structured datasets, and high costs associated 
with obtaining extensive experimental data limit the immediate 
and widespread use of ML-based approaches. The current 

research on applying ML to thermal spray process optimization 
demonstrate the complexity of building training datasets that 

genuinely reflect industrial realities [4-10]. 

In response, the AccurasprayHub is conceived as a platform 

that centralizes multi-source data, provides consistent data 
structures, and applies advanced analytics to identify stable 
process windows and emerging trends. Rather than claiming a 
turnkey ML solution, its approach is grounded in incremental 
progress. It begins with harmonizing data across sensors, 
booths, and laboratory results. It further proceeds to implement 

targeted analytics; and gradually moves toward ML integration 
once datasets are mature enough to support reliable modeling. 
This methodology acknowledges the complexities and 
economics of industrial environments and seeks to present a 

realistic path forward for the thermal spray community.  

Experiments and Platform Description 

The AccurasprayHub integrates diverse data sources within a 
single, coherent framework. Process parameters, including gas 



 
 

flows, power settings, and stand-off distances, are collected 
along with feedstock details such as powder composition, 
morphology, and particle size distribution. Simultaneously, the 
platform logs in-situ plume measurements from the 
Accuraspray 4.0 sensor, capturing particle temperature 

distributions, velocity profiles, and plume geometry attributes 
like width and intensity gradients. Complementing these 
process- and sensor-related data, the AccurasprayHub also 
records coating microstructural properties measured offline, 
including porosity, hardness, oxide content, and thickness 

uniformity. 

A schematic representation of the AccurasprayHub 
environment is illustrated in Figure 1. One or multiple thermal 
spray booths, each equipped with an Accuraspray 4.0 sensor, 
collect in-situ plume data—such as temperature, velocity, and 

plume width—in real time. Operators begin by selecting or 
loading an established recipe, which includes powder 
specifications, booth parameters, and power settings. During 
spraying, the Accuraspray 4.0 monitors the evolution of the 
plume characteristics and transmits data to the Hub. Upon 
completion of a coating run, representative test coupons 

undergo laboratory analysis to verify microstructural and 
mechanical properties such as hardness or porosity. These lab 
results feed back into the Hub to refine process windows, 
highlight potential equipment wear, and maintain consistent 

coating quality for future production. 

 

Fig. 1. Schematic representation of the AccurasprayHub 

environment in a multi-booth thermal spray production.  

A key element of the approach lies in the collection and 
management of these datasets at an industrial partner’s site, 
where a series of targeted runs were performed over the course 
of a year. The resulting data are currently used to illustrate the 
AccurasprayHub’s functionalities and to refine its analytical 

capabilities.  

The initial stage of this project focused on confirming the 
reliability of conventional methods. For instance, the well-
established practice of defining min-max tolerance windows 

around particle temperature and velocity readings was 

maintained as a baseline. While these windows serve as first 
approximations for stable conditions, their limitations quickly 
become apparent when equipment ages, powder suppliers 
change, or the scale of production increases. By embedding 
these data within the AccurasprayHub, we can track how each 

of these tolerance windows evolves over time and across 
different scenarios, and we can begin to understand their 
suitability for new conditions. Thus, even before implementing 
ML, the platform provides a richer context, making it clearer 
how static thresholds might be modified or replaced by more 

nuanced, data-driven criteria. 

Results: From Data Integration to Actionable 

Process Insights 

During the trial period, the AccurasprayHub provided advanced 
analytics that moved beyond the simple verification of min-max 

conditions. By leveraging the integrated dataset, engineers were 
able to compare multiple runs over time and assess how stable 
the plume measurements remained within established 
tolerances. In cases where coating quality deteriorated, the 
AccurasprayHub allowed engineers to correlate this change 
with shifts in the recorded parameters. For example, slight drifts 

in particle velocity distributions, initially considered within the 
acceptable window, correlated with measured decreases in 
coating hardness. Although not a definitive proof of causation, 
such observations presented an opportunity to refine process 
windows and operator practices. The platform’s insights helped 
highlight the cumulative effects of spray gun wear, subtle 

feeder instabilities, and changing powder lots, which 
individually might seem insignificant but collectively influence 

coating properties. 

 

Figure 2. Particle temperature and velocity traces for three 
consecutive 30-second spray runs, plotted alongside pre-set 

min and max tolerance lines. All three runs remain within the 
prescribed process window, illustrating stable and repeatable 

conditions. 



 
 

As an illustration, Figure 2 shows data from a typical run, 
measured over a 20-second spray period. The real-time traces 
of particle temperature and velocity are plotted alongside the 
pre-defined min and max tolerance lines. In this example, all 
the indicators have remained within the specified bounds, 

demonstrating stable spray conditions.  

Figure 3 summarizes the temperature and velocity for several 
ranges runs. This condensed view highlights whether operating 
points are clustering within stable, predefined zones or 

gradually shifting out of range. Such side-by-side comparisons 
provide a clear indication of how consistent the process is from 
one run to the next, helping operators quickly verify that no 
immediate corrective action is needed. These proactive 
decisions could not have been made as confidently without a 
centralized data source that contextualized each run against 

historical baselines. 

 

Figure 3. Temperature and velocity recorded over multiple 
runs. This summarized view rapidly reveals trends or deviations 
in plume characteristics, enabling proactive responses to 

maintain quality. 

To further illustrate how in-situ plume characteristics relate to 
key mechanical properties, Figure 4 presents three charts that 
each plot temperature (left y-axis) and velocity (right y-axis) 
against a measured coating property on the x-axis. The top chart 

shows coating hardness, the middle chart shows tensile break 
bond, and the bottom chart shows Almen test deflection in 
inches. These properties were obtained from laboratory tests 
that, while essential for final qualification, can be time-
consuming and costly. Vertical lines on each chart indicate 
minimum or maximum acceptable thresholds for the 

corresponding mechanical property. The results demonstrate 
that for this process setup, all data points lie above the minimum 
standards, suggesting that the plume temperature and velocity 
remained within an effective process window for depositing 

coatings that meet or exceed quality requirements. 

By combining process data with laboratory results, operators 
gain both rapid feedback from real-time plume measurements 
and definitive confirmation from standardized mechanical tests. 
Although laboratory analyses often require additional resources 
and time, they serve as the gold standard for validating coating 

performance. The AccurasprayHub ensures that these data, 
once collected, are seamlessly integrated with run parameters 
and sensor readings, enabling a holistic assessment of how 
plume conditions influence final mechanical outcomes. This 
approach streamlines the qualification process, helping 
organizations balance the need for frequent, cost-effective 

monitoring with the rigorous certification demands of 

aerospace and other high-stakes industries. 

 

Figure 4. Three stacked charts illustrating the relationship 
between in-situ plume characteristics and key mechanical 
properties. Each chart plots temperature (left y-axis) and 

velocity (right y-axis) against a different coating property on 
the x-axis: hardness (top), tensile break bond (middle), and 
Almen test deflection (bottom). Vertical lines indicate required 
minimum or maximum thresholds for each property. All data 
points exceed the specified criteria, indicating that temperature 
and velocity remained within an effective process window for 

achieving acceptable coating performance. 

During extended production campaigns, the AccurasprayHub 
monitors not only temperature and velocity but also the spatial 
consistency of the plume. As certain components of the spray 

gun begin to wear, the plume may shift from its original 
centerline, introducing what we refer to as “plume deviation.” 
Figure 5 provides a visual illustration, showing a photograph of 



 
 

the plume with the original reference position overlaid on the 
current plume shape. This comparison clarifies how the 
deviation is measured, as the plume gradually shifts from its 
nominal position. Figure 6 demonstrates how the mean plume 
deviation evolves over multiple runs, tracking the transition 

from acceptable to unacceptable conditions. When the 
deviation exceeds a predefined threshold, gun maintenance has 
proved to restore the plume profile. Observing this trend in near 
real time allows for proactive maintenance, preventing 
suboptimal coating outcomes by flagging the exact point at 

which wear-related drift becomes detrimental. 

 

Figure 5. Photograph of the plume with an overlay indicating 
the nominal reference position and the current plume profile. 
The highlighted offset between the two profiles represents the 

plume deviation, which provides a clear visual measure of gun-

related wear or misalignment. 

Figure 6. Evolution of the mean plume deviation over the 
course of multiple runs. The plume deviation remains near zero 
under normal conditions but increases as the gun wears, 

prompting replacement to return the spray geometry to its 

original configuration. 

The AccurasprayHub is designed to function as a flexible and 
modular platform capable of supporting a range of thermal 

spray processes and sensor configurations. Although it is most 
straightforward to deploy in a booth equipped with an 
AccuraSpray 4.0 sensor—where temperature, velocity, and 
plume intensity data are readily available—the Hub’s 
underlying data structure can accommodate alternative 
instrumentation. Whether the process is HVOF, atmospheric 

plasma spray, or another variant, and whether plume 
characteristics are measured by Tecnar’s sensors or third-party 
devices, the goal remains the same: to centralize all relevant 
information in one location. This includes fundamental booth 
parameters, lab results, maintenance logs, and any in-situ plume 
measurements that offer insight into process stability. By 

allowing for multiple data formats and sources, the Hub avoids 
constraining users to a single process or sensor technology and 
instead provides a cohesive framework for collecting, 
correlating, and analyzing the critical data that underpin 

successful thermal spray operations. 

The dataset, though still limited in size and scope relative to the 
ambitions of full-scale ML modeling, has demonstrated the 
immediate value of integrated data analytics. Plant managers 
and engineers found that having a single access point for all 

relevant information simplified the interpretation of process 
behavior. Over time, as these operators and decision-makers 
became familiar with the platform’s capabilities, the trust in its 
outputs increased. This acceptance paves the way for the next 
steps, where more complex, automated methodologies may be 
introduced once the underlying data infrastructure is 

sufficiently robust. 

Advancing Data Structuring and Preparing for 

Machine Learning 

Building a dataset suitable for advanced machine learning 

involves more than simply aggregating data points. The 
complexity of thermal spray processes, involving multiple 
feedstock powders, evolving equipment states, and 
environmental fluctuations, demands meticulous data curation. 
The reliability of any future predictive model depends on the 
integrity and representativeness of the dataset used for training. 

As a result, the AccurasprayHub places strong emphasis on data 
quality, classification, and filtering before any ML algorithm is 

deployed. 

One key challenge is the classification of runs and conditions 

into comparable sets. If data from a worn gun are mixed 
indiscriminately with data from a newly refurbished gun, or if 
powder feed inconsistencies are not recorded, then meaningful 
correlations can be obscured by confounding factors. The 
AccurasprayHub addresses this issue through a systematic 
approach to data tagging and filtering. Each run is annotated 

with contextual information, including equipment maintenance 
actions, changes in powder suppliers, and recorded 
environmental conditions. By making these context tags 
available, it becomes possible to isolate subsets of data that 
represent consistent scenarios, enabling more credible 

statistical and ML-based analyses. 

Another fundamental task involves the rigorous detection and 
treatment of outliers. Sensor glitches, irregular powder feed 
events, or transient nozzle blockages can produce spurious data 
points that, if not flagged and addressed, might lead ML models 

astray. The AccurasprayHub incorporates methods for 
identifying and, where appropriate, discarding anomalous data. 
This cleansing process ensures that the core dataset better 
reflects the true operational envelope of the spray booth and 

prevents the model from “learning” patterns that do not exist. 



 
 

As the datasets grow and become cleaner over time, the 
AccurasprayHub will gradually integrate ML-driven methods 
to further refine process windows and enable more predictive 
capabilities. Rather than rushing into complex algorithms, the 
focus remains on building confidence that the data itself is 

reliable. When the time comes to introduce ML for correlating 
spray characteristics with coating properties, the underlying 
dataset will be capable of supporting models that offer real 
industrial value. The result will be ML tools that not only 
produce accurate predictions under stable conditions but also 
remain robust as the spray booth evolves, as new powders are 

introduced, and as equipment undergoes natural wear. 

This incremental approach is deliberate and pragmatic. Instead 
of proposing an all-encompassing ML solution with unrealistic 
expectations, the AccurasprayHub acknowledges the need to 

start with strong data fundamentals. It demonstrates to the 
thermal spray community that stepping stones exist between 
today’s reliance on experience-based adjustments and 
tomorrow’s predictive, autonomously adjusted process 
controls. By focusing on realistic data qualification tasks, this 
approach avoids the pitfalls of solutions that fail to gain traction 

when confronted with the messy realities of industrial 

production. 

Discussion and Outlook 

The AccurasprayHub represents a significant step toward more 
data-driven and less operator-dependent control of thermal 
spray processes. Its development considers the complexities 
and costs associated with generating high-quality industrial 
datasets. Rather than promising immediate breakthroughs in 
fully automated optimization, this approach acknowledges that 

progress will be incremental. The emphasis on building robust 
datasets, ensuring coherent data structuring, and gaining initial 
insights through visualization and trend analyses lays a solid 

foundation for introducing more advanced analytics. 

As the platform matures, it will become feasible to integrate 
predictive maintenance models that anticipate when equipment 
conditions will drift out of the desired windows. Over longer 
time horizons, once a larger critical mass of validated data is 
available, more advanced ML techniques such as supervised 
learning or reinforcement learning can be employed to suggest 

dynamic adjustments to process parameters. These techniques 
could eventually enable stable deposition processes without 
continuous expert intervention. Moreover, the availability of a 
centralized data hub across multiple booths and production 
lines opens the possibility of harmonizing best practices and 
standardizing approaches at a larger scale, an outcome that 

could greatly benefit multi-facility operations. 

The long-term vision is not merely the application of ML tools 
in a vacuum, but their integration into the everyday decision-
making process within thermal spray facilities. This vision 

includes improving communication between operators and 
engineers, enhancing training efforts for new personnel, and 

ultimately offering decision-makers a clearer understanding of 
how their processes is performing. Over time, this increased 
transparency and control, will translate into better coating 
quality, improved equipment longevity, and more predictable 

production cycles. 

Conclusion 

Thermal spray processes demand an informed and nuanced 
approach to achieving consistent, high-quality coatings. 

Traditional methods, while effective to a point, rely heavily on 
operator experience and static tolerance settings that may not 
fully account for evolving process conditions, powder 
variabilities, or equipment wear. The AccurasprayHub 
addresses these limitations by providing a centralized platform 
for integrating, analyzing, and gradually refining the data that 

underpin the entire process chain. 

This work emphasizes realism and practicality. It acknowledges 
that building a suitable dataset for advanced ML methodologies 
is challenging and time-consuming, that trust must be earned 

gradually, and that any complex analytics must rest on a stable 
foundation of reliable data. By focusing first on data 
structuring, classification, and consistency checks, the 
AccurasprayHub ensures that when ML algorithms are 
eventually introduced, they will deliver insights that are both 

meaningful and robust. 

The incremental strategy presented here distinguishes our work 
from more speculative approaches. Instead of claiming an 
immediate revolution driven by AI, the AccurasprayHub marks 
the start of a journey toward data-informed decision-making, 

incremental improvements, and ultimately, more autonomous 
and predictive control of thermal spray operations. As a result, 
it sets the stage for a future in which thermal spray practitioners 
and ML experts can collaborate more effectively, blending 
domain expertise with computational intelligence, and steadily 
improving the quality and consistency of thermal spray 

coatings. 
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